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Abstract  

The method of tensor invariants is systematically 
summarized and generalized. With the help of the 
theorem of 'shadow' and the theorem of the number of 
independent bases, the whole family of isovariant 
orthogonal basis functions for pentagonal, icosahedral, 
octagonal, decagonal and dodecagonal point groups is 
obtained. On the basis of these results, the Hall- 
coefficient tensors for quasicrystalline point groups are 
identified and tabulated. The results of this group- 
theoretical study are briefly discussed and summarized. 

Introduct ion 

Since the discovery of quasicrystals (Schechtman, Blech, 
Gratias & Cahn, 1984), there have been continuous 
efforts to uncover the influence of the new symmetry on 
the physical properties of materials. On the theoretical 
side, Bak (1985) studied the symmetry, stability and 
elastic properties, phenomenologically, of icosahedral 
diffraction patterns, and obtained the acoustic phonon 
and-phason modes. Brandmiiller & Claus (1988a,b) 
provided the irreducible tensors of ranks 1--4 for all the 
irreducible representations of the pentagonal and 
icosahedral point groups. Rama Mohana Rao & 
Hemagiri Rao (1992, 1993) have worked out the 
pyromagnetic, magnetoelectric, first- and second-order 
piezomagnetic polarizability constants and third-order 
elastic coefficients for the point groups with fivefold 
rotation axes. The present authors (Jiang, Liao, Chen & 
Zhang, 1990, 1992; Jiang, Liao, Chen & Shen, 1992) 
have derived the piezoelectric, elastic, photoelastic and 
Brillouin tensors corresponding to pentagonal, icosahe- 
dral and dodecagonal point groups, and obtained the 
Raman and hyper-Raman tensors of six octagonal point 
groups. On the experimental side, not only has 
anisotropy been observed in the Hall effect (Zhang et 
al., 1990; Wang, Zhang & Chen, 1993), electric 
resistivity (Lin et al., 1990), thermopower (Lin et al., 
1990) and thermal conductivity (Zhang et al., 1991), but 
the elasticity of A1-Cu-Li and A1-Cu-Fe quasicrystals 
has been found to be isotropic through ultrasonic 
(Reynolds, Golding, Kortan & Parsey, 1990) and 
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Brillouin scattering (Vanderwal, Zhao & Walton, 1992) 
studies. 

There are many methods of calculating property 
tensors. Some of them have been further improved and 
developed by many authors in different approaches to 
satisfy the requirements of various types of tensors (Fumi 
& Ripamonti, 1980; Kopsky, 1979; Brandmialler & 
Winter, 1985; Nye, 1985). Among them, the method of 
tensor invariants (MTI) is a useful and powerful one. 
After systematic improvement and generalization in this 
paper, this method can be applied to the property tensors 
of quasicrystalline point groups easily and directly just as 
it was applied in crystal symmetry groups. Here, by the 
MTI, the Hall-coefficient tensors for pentagonal, 
icosahedral, octagonal, decagonal and dodecagonal 
point groups are calculated and presented. 

Meth od  of  tensor invariants  

The mathematical basis of the MTI is the group- 
theoretical version. It has been proposed and summar- 
ized by various authors (Landau & Lifshitz, 1959; 
Callen, 1968; Lax, 1974; Nye 1985). But in fact at least 
three problems have not, essentially, been solved. First, 
there is no general procedure to carry out the calculation. 
Second, there is no standard to justify whether one has 
obtained the whole family of independent isovariant 
orthogonal basis functions of a given irreducible 
representation (Jr). Third, there is no usable group table 
including all of the independent isovariant orthogonal 
bases up to rank 3. For these reasons, the method can be 
used only in some simple case having didactic interest 
(Fumi & Ripamonti, 1980). 

In this paper, the MTI is improved and generalized. It 
is described as follows: 

Property tensors can be defined as Tabc...~... with j 
indices of the polar vector a, b, c .... and k indices of the 
axial vector l, m, n . . . .  (a, b, c .....  l, m, n . . . .  = 1, 2, 3). 
Under the operation/~ of a given point group, the tensor 
components are transformed as 

k[L~c...~...] 
= [det (k)] k ~ R~rRbsRc,...RtcRmpR~q...rrs,...~... (1) 

rsl...opq... 
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wherea, b,c ..... l ,m ,n  ..... r , s , t  .... o ,p ,q  .... = 1 ,2 ,3 ,  
Rat is the element of the transformation matrix of a polar 
vector and det (/~) is the determinent of this matrix. 

From (1), it is obvious that the tensor components are 
transformed as a product, 

XaX~;..35XmN.... 

so the inner product of Lbc. .Y~. . .  and X~Xt, Xo. ) f  IX m X n... 
will not change under the operation/~ of the point group. 
Thus, one has 

R[ Y~ Zabc...~mn...XaXbXo.-~lXmXn...] 
abc...Imn... 

= Z Lbc...~mn... X a x b x c ' ' ' x l x m x n  . . . .  (2) 
abc...lmn... 

Owing to the macroscopic symmetry, Neumann's 
principle holds good, according to which 

Tabc...lmn... - -  k[Tabc...~mn...]. (3) 

So (2) can be considered as an invariant that takes 
Tat,c...y-~" as the coefficients of proportionality of 
X a X b X c . . . X l X m X  n . . . .  If one has found in any way an 
invariant of the form 

g[  ~_~ Aabc.. .T~.. .XaXbXo..X lXmXn. . . ]  
abc...lrnn... 

- -  . Z  A abc...~mn.., x a X b x °  " .X IX m X n .... 
abc...lmn... 

(4) 

by comparison with (2), one can obtain the nonzero 
independent tensor components 

Lbc...lmn... - -  A~c...~..." (5) 

The right-hand side of (4) is defined as the general tensor 
invariant (GTI) from which the tensor components can be 
read off as a linear combination of nonzero independent 
parameters. This is the general principle of the MTI. 

In the practical use of the MTI, the following four 
theorems are very important. 

Theorem 1. (Bhagavantam & Venkatarayudu, 1951): 
The number of nonzero independent components of 
property tensors is given by 

n = ( l /g)  Y~ X(/~)Z(A)(/~). (6) 
k 

Here the quantity x(A)(~) denotes the character of the 
total symmetry ir and x(R) the character of the reducible 
representation that is formed by the polar or axial 
property tensor of rank j + k with corresponding 
intrinsic symmetry, g is the rank of the point group. 

Theorem 2. The inner product of two sets of isovariant 
orthogonal basis functions of the same ir constitutes an 
independent tensor invariant (ITI). 

Theorem 3 (Jiang, 1990). The number of independent 
basis functions of the ith ir is given by 

n = ( l /g )  ~] X(k)[x(i)*(e)] ,  (7) 
k 

where x(i)(R) expresses the character of the ith ir for the 
symmetry operation R of the point group, X(/~) the 
character of the representation matrix of the basis 
function and g the rank of the point group. 

Theorem 4 (Jiang, Liao & Chen, 1992a). If the 
physical ir that is constituted by two complex conjugate 
ir's has one set of real bases (a, b) with an orthogonal 
representation matrix, there is a 'shadow' set ( -b ,  a) that 
is isovariant with (a, b). 

On the basis of theorem 3 and theorem 4, high-rank 
isovariant bases can be calculated from lower-rank bases 
with the help of projection operations. It is necessary to 
check whether the basis functions are linearly indepen- 
dent and whether they span the same orthogonal 
transformation matrix. 

In this way, the whole family of the isovariant 
orthogonal bases up to rank 3 for crystal and octagonal 
point groups and the isovariant orthogonal bases up to 
rank 2 for point groups with fivefold, tenfold and 
twelvefold rotation axes have been obtained. The former 
have been reported by the present authors (Jiang, Liao & 
Chen, 1992a; Jiang, Liao, Chen& Shen, 1992); the latter 
are shown in Table 1. 

In summary, with the basis functions at hand, one can 
identify the property tensors by the following steps: 

(1) Determine the number of independent tensor 
components. 

(2) On the basis of theorem 2, list the whole family of 
ITI of ith ir. 

(3) Multiply the ITIs by different coefficients and sum 
them up, thus obtaining the GTI. 

(4) Read off the tensor components from the GTI. 
(5) Consider the intrinsic symmetry that has not been 

included in step (2). 

Hall-coefficient tensors 

It can be seen that the phenomenon of the Hall effect is 
the appearance of an additional electric field E in the 
present of a magnetic field H applied normal to an 
electric current J flowing in a conductor, and the Hall 
coefficients Ru~x of first order are obtained from the 
governing relation 

& = R.~E~I4~, (8) 

with the indices taking the values 1, 2 and 3. Because the 
symmetry of Ru~x is restricted by Onsager's reciprocity 
theorem, one has 

R~vx = -Rv~x. (9) 
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Table 1. I s o v a r i a n t  o r t h o g o n a l  b a s e s  corresponding to the point  groups with fivefold, tenfold or twelvefold rotation 
a x e s  

S10 = C5 ® i, D5d = D5 ® i, Ih = I ® i, Cloh = Clo @ i, Dloh = Dlo @ i, C12 h = C12 @ i, D12h = Dlo ® i. 

Point First-rank 
group ir bases 

z 
Rz 

Csh 

D5 

C5v 

Dsh 

First-rank 
bases 

A z, Rz 
El* (x, y), (Rx, Ry) 
E2* 
A' Rz 
El '*  (x, y) 
E2'* 
m" z 
El"*  (Rx, Ry) 
E2 H* 
Ai 
A2 z, Rz 
El (x, y), (Rx, Ry) 
E2 
A 1 z 
A2 Rz 
Et (x, y), ( ~ ,  Ry) 
E2 
AI ~ 
A2' Rz 
e l '  (x, y) 
E2 
AI" 
A2 tt z 
E ( '  (Rx, Ry) 
E2" 
A z, Rz 
B 
El * (x, y), (Rx, Ry) 
E2* 
E3* 
E4* 
E5 * 
A Rz 
B z 
El* (x, y) 
E2* 
E3* 
E4* 
Es* (Rx, Ry) 

Point 
Second-rank bases group 

xx  + yy, zz, x y -  yx  
(xz, yz), (zx, zy) 
( = -  y y -  x y -  yx) 
xx  + yy, zz, x y - -  yx  

Cl2v 
(xx - yy, -~y - yx) 

(xz, yz), (zx, zy) 

xx  + yy, zz 
x y - -  yx  
(yz, --xz), (zy, zx) 
(xx-- yy, --xy - -yx )  
xx  + yy, zz DI2 
x y -  yx 
(xz, yz), (zx, zy) 
(xx - yy, - x y  - yx) 
xx + yy, ZZ 
x y -  yx  

(xx - yy, - x y  - yx) C,0 

(yz, -xz), (zy, -zx) 

xx  + yy, zz, x y -  yx  

(xz, y z ) , ( zx ,  zy) 
( = -  yy, - ~ y  - yx) Dlo 

xx + yy, zz, x y - -  yx  f 

i (xx - yy, - xy  - yx) C~o~ 

(xz, yz), (zx, zy) 

*Contains shadows. 

Cl2 

SI2 

ir Second-rank bases 
A1 xx  + yy, zz 
A2 xy - y x  
B1 
B2 
El (x, y), (Rx, Ry) (xz, yz), (zx, zy) 
E2 (xx - yy, - x y  - yx) 
E3 
E4 
Es 
Ai xx  + yy, zz 
A 2 z, Rz xy -- yx  
Bl 
B2 
E1 (x, y), (~, Ry) (yz, -xz), (zy, -zx) 
E2 ( x x -  yy, - xy  - yx) 
E3 
E4 
E5 
A z, Rz xx  + yy, zz, x y - y x  
B 
El* (x, y), (ex, Ry) (xz, yz), (zx, zy) 
E2* ( x x - y y ,  - x y  - -yx)  
E3* 
E4* 
A1 xx  + yy, zz 
A2 z, Rz xy - yx  
Bi 
B2 
El (x, y), (Rx, Ry) (yz, - x z ) ,  (zy, - z x )  
E2 (xx- -  yy, - x y  - yx) 
E3 
E4 
AI z xx + yy, zz 
Az Rz xy - yx  
BI 
BE 
Et (x, y), (~, gy) (xz, yz), (zx, zy) 
E2 (xx - yy, - - x y - - y x )  
E3 
E4 
A x x + y y + z z  
El (x, y, z), (Rx, Ry, Rz) ( y z -  zy, zx - xz, xy - yx) 
1:2 
G 
H (xx + y y -  2zz, 

3~/2(xz + zx), 3~/2(xy + yx), 
3(yy--.r.x), 31/2(yz + zy)) 

As the character of  the axial vector is given by 
1 4-2  cos 0 and that of the antisymmetric conductivity 
by 1 + 2 cos 0, the compound character representing the 
first-order Hall effect can be expressed as 

x(R) = (1 + 2cosO)(1 + 2cos0 ) .  (10) 

In (10), a positive or negative sign is taken according to 
whether the symmetry operation R in question is a pure 
rotation or a rotation-reflection through an angle 0. From 
theorem 1, the number n of  independent tensor 
components required to describe the Hall effect in 
quasicrystals are obtained; these are listed in Table 2. 

The nonvanishing and independent tensor components 
in respect of each of the quasicrystalline classes for Hall 
coefficients are identified by the MTI. They are given in 
Table 3. For the purpose of  illustration, the Hall- 

Table 2. Number n of  independent tensor components 
required to describe the Hall  effect in quasicrystals  

Pentagonal or Octagonal 
icosahedral point 
point group group 

C5 3 C8 3 
Csh 3 $8 3 
Sl0 3 Csh 3 
D5 2 D8 2 
Csv 2 Csv 2 
D5h 2 Dsh 2 
D5d 2 
I 1 
Ih 1 

Decagonal Dodecagonal 
point point 
group group 

C10 3 Cl2 3 
Cloh 3 S12 3 
Dl0 2 Cl2h 3 
Cloy 2 DI2 2 
Dloh 2 Cl2v 2 

D12h 2 

coefficient tensor of  point group C10 is taken as an 
example. 

The Hall-coefficient tensor is a third-rank axial tensor. 
According to its intrinsic symmetry, the ITI should take 
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Table 3. Non-vanishing and independent tensor compo- 
nents of  Hall coefficients for  quasicrystalline point 

groups 

Point group 
C5, Csh, Slo, Cs, Csh, Ss, 
Clo, Cloh, C12, Cl2n, $12 

Ds, Csv, D5h, Dsa, D8, Csv, O8h, 
Dr0, C10~, Dl0h, D12, Ct2v, Dl2n 
l, lh 

Hall coefficients 
R123 = -R213, 

R231 = R312 = -R321 = -RI32 ,  

R311 = R322 = --R131 ---- --R232 

R123 ---- -R213, 

R231 = R312 = --R321 = -R132 

R123 = R231 = R312 

= -R132 = -R213 = -R321 

the form of the product of one axial vector and one 
second-rank basis function. From Table 1, we have 

A: Rz; xx + yy, zz, x y -  yx. 
El: (Rx, Ry); (xz, yz), (zx, zy), (-yz,  xz), 

(-zy,  zx). 
So the 1TI of A is 

xxRz + yyRz, zzRz, x y R z -  yxRz. 

and the 1TI of E1 is 

xzRx + yzRy, zxRx + zyRy, - y z R x  + xzRy, 
- z y R x  + zxRy. 

GTI  = A(xxRz + yyRz) + BzzRz + C ( x y R z -  yxRz) 

+ D(xzRx + yzRy) + E(zxRx + zyRy) 

+ F ( - y z R x  + xzRy) + G ( - z y R x  + zxRy). 

Compared with (4), we have: 

Rll  3 = R223 ----A, R333 = B, R123 = -R213C, 
R131 ~-- R232 ---- D, R311 = R322 = E, 
R132 = -R231 ~-- F,  R312 ---~ -R321 -- G. 

With consideration of (8), we can obtain 

A = B = 0 ,  D = - E  and F = - G .  

So the nonvanishing and independent tensor components 
are 

R123 = -R213, R231 ----R312 ---- -R321 "- -R132, 
R131 -" R232 ---- -R311 = -R322. 

Discussion 

It can be seen that the MTI is a general and powerful 
method that can be used not only in determining various 
polar and axial tensors of crystalline point groups but 
also in calculating property tensors of quasicrystalline 
classes. With the third-rank basis functions at hand, one 
can calculate the acoustic gyrotropic, acoustic eleclro- 
gyration and third-order elastic tensors without any 
difficulty (Jiang, Liao &Chen ,  1992b). 

It can be observed that, for the Hall effect, the 26 
quasicrystalline point groups can be divided into three 
categories. 

(a) The point groups Cn, Sn and Cnh require three 
coefficients each, as do those in tetragonal, hexagonal 
and trigonal crystal systems. 

(b) The point groups Dn, Cnv, Dnh and Dnd require two 
coefficients each, as do those in tetragonal, hexagonal 
and trigonal crystal systems. 

(c) The two icosahedral point groups require only one 
coefficient each, as do those in cubic crystal systems. 

The results summarized above can be understood on 
the basis of Ripamonti 's (1987) conclusion that, for 
n < N, an nth-rank tensor, which is invariant under a 
cyclic rotation group CN along a direction z, is actually 
isotropic about z, and that, if two (or more) directions of 
rotation symmetry CN (N > n) exist for the symmetry 
group G, then the tensor is fully (i.e. in three dimensions) 
isotropic. 

The results given in Table 3 can be extended to other 
tensors. For the point groups with fivefold, eightfold, 
tenfold and twelvefold rotation axes, any one of the 
antisymmetric axial tensors of rank three, such as the 
magneto-optical tensor and the magnetic-field-induced 
force constant, has the same form as that given in 
Table 3. 

Recently, experimental investigations of single dec- 
agonal quasicrystals (A1-Ni--Co, A1--Cu-Co, and A1-Si- 
Cu-Co) show that the antisotropy of the Hall coefficient 
is quite universal for these structures. Both the sign and 
the temperature dependence of R~,~x changes when the 
magnetic field rotates by 90 ° from the tenfold axis 
(Wang, Zhang & Chen, 1993). This can be explained not 
only on the basis of the macroscopic property tensor of 
the Dloh point group but also in the framework of the 
interaction of the Fermi surface with the quasi-Brillouin 
zone boundaries that are determined by the structural 
symmetry. 

This work was supported by the Project of New 
Science and Technology Stars of Beijing Municipality. 
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Abstract 

A new approach for the calculation of diffraction profdes 
in strained crystals is developed, based on the visual 
concepts of the dispersion surface and Poynting vectors. 
By this approach, analytical expressions have been 
obtained for diffraction profiles for the case of a 
constant strain gradient without, as well as with, 
ultrasonic excitation. Calculations of acoustically 
induced modifications in diffraction spectra explain in 
detail the anomalous dependence of integrated intensity 
on ultrasound amplitude, a dependence that was recently 
found in the Laue scattering geometry. 

1. Introduction 

The sensitivity of X-ray diffraction to static strain fields 
in single crystals is traditionally used to study lattice 
distortions related to crystal defects. Recently, attention 
has been given to X-ray diffraction under dynamic 
deformations created by high-frequency ultrasound (US) 
(Kohler, Mohling & Peibst, 1974; Entin, 1977, 1979; 
Entin & Assur, 1981; Chapman, Colella & Bray, 1983) 
as a result of the new possibilities of measuring weak US 
fields (Cerva & Graft, 1984; Andreev, Ponomarev & 
Smolin, 1988; Zolotoyabko, Panov & Schvarkov, 1993; 
Zolotoyabko, Jacobsohn, Shechtman, Kantor & Salzman, 
1993) and of acoustically controlling X-ray beams in 
space and time (Kikuta, Takahashi & Nakatani, 1984; 
Kocharyan, Sukiasyan, Megrabyan & Sarkisyan, 1989; 
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Roshchupkin, Brunel, Bergevin & Erko, 1992). More- 
over, it turns out that diffraction processes in the 
presence of combined static and dynamic deformation 
fields are of great interest, because of the high sensitivity 
of US-induced diffraction effects to small intrinsic strains 
in the samples. Few works (Entin, Khrupa & Datsenko, 
1990; Khrupa, Entin & Datsenko, 1991; Zolotoyabko, 
Polikarpov, Panov & Schvarkov, 1992; Raranskii, 
Fodchuk, Novikov & Korovyanko, 1993) have been 
devoted to the development of new methods for the 
characterization of the structural quality of semiconduc- 
tor crystals using the high sensitivity mentioned. The 
application of these methods is limited, however, by 
insufficient knowledge about diffraction phenomena in 
complex static and dynamic deformation fields in real 
crystals with defects and subsequent difficulties related to 
the interpretation of experimental data. A comprehensive 
analysis can be performed for crystals homogeneously 
bent by a constant strain gradient (Iolin, 1987; Iolin, 
Raitman, Kuvaldin & Zolotoyabko, 1988; Zolotoyabko 
& Panov, 1992; Chukhovskii, Nosik & Iolin, 1993). 
Even in this model case interesting effects such as a new 
type of Pendellfsung fringe (Zolotoyabko & Panov, 
1992) and the anomalous behaviour of the integrated 
diffraction intensity S (Iolin, Raitman, Kuvaldin & 
Zolotoyabko, 1988; Zolotoyabko & Panov, 1992) were 
observed under US excitation. These effects shed some 
light on the mechanisms of X-ray-acoustic interaction in 
strained crystals. For example, the anomalous behaviour 
of S consists of a substantial decrease (by up to 50%) of S 

Acta Crystallographica Section A 
ISSN 0108-7673 ©1995 


